
ABELIAN MODEL STRUCTURES

ANASTASIOS SLAFTSOS

Abstract. This manuscript consists of the author’s notes for his talk in

“CHARMS Summer School” at Université de Versailles Saint Quentin en Yve-
lines. The talk was part of a mini-course on “The Q-shaped derived category”

given by Peter Jørgensen. More specifically, in this talk we introduce the no-

tion of an (abelian) model category and explore the connection between Hovey
triples and certain cotorsion pairs in an abelian category A. The main pur-

pose of the talk is to prove that the full subcategory Acf of cofibrant-fibrant

objects is a Frobenius exact category and it’s corresponding stable category is
the homotopy category Ho(A) of the model structure on A.

1. Motivation

Consider R to be a commutative ring and a multiplicative closed subset Σ of R.
It is known (e.g. [Eis95]) that one can always construct the ring of fractions R[Σ−1]
in a universal way, given by the canonical map R −→ R[Σ−1]. Notice that if R is
no longer commutative and Σ is an arbitrary subset of R one can still construct
the localisation ring but loses control of the elements, as now they form strings
r1r2r3 . . . rk with ri ∈ R or ri ∈ Σ. If Σ has “nice” properties though (i.e. it is an
Ore set or a denominator set) one can represent the elements of R[Σ−1] as fractions
rs−1, with r ∈ R and s ∈ Σ.

Notice that a ring R is a pre-additive category with a single object. More gener-
ally, consider a category C and S ⊂ Mor(C), where Mor(C) is the category whose
objects are morphisms in C and the Hom sets, HomMor(C)(f, g), consist of pairs
(a, b) of morphisms in C, such that the following square commutes.

X Y

Z W

a b

f

g

Theorem 1.1 ( [GZ12] ). Let C be a category and S ⊂ Mor(C). There is a
construction of a category C[S−1] and a functor Q : C −→ C[S−1] that maps
morphisms of S to isomorphisms and is universal in the sense that, for every functor
F : C −→ D which maps morphisms of S to isomorphisms of D, there exists a
unique functor F̄ : C[S−1] −→ D such that F = F̄Q. In symbols, the diagram
below commutes.

C C[S−1]

D

F

Q

∃!F̄
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However, in this constructions several problems might occur. In particular one
has to consider the following:

• Morphisms in C[S−1] are hard to control. In particular the form strings of
morphisms f1f2f3 . . . fr, with fi ∈ Mor(C) or fi ∈ S.

• More disturbingly, each individual Hom might not even form a set, but a
proper class.

Fortunately, the framework of model categories provide a fruitful setup to resolve
these problems and a way to better control such categories.

Example 1.2. LetA be an abelian category andC(A) the category of complexes of
A-objects. In Homological Algebra, usually one is interested in “grouping” objects
with the same (co-)homology. In particular, we call a morphism f : X −→ Y in
C(A) a quasi-isomorphism if the induced morphism in the (co-)homology level
Hn(f) : Hn(X) −→ Hn(Y ) is an isomorphism for all n ∈ Z. So one needs to
build the category C(A)[qis−1], where quasi-isomorphisms are formally inverted.
However, as it is known for this purpose it is usually preferred to pass through the
intermediate step of the homotopy category K(A), where we can perform calculus
of fractions in the sense of [GZ12]. Schematically:

C(A) C(A)[qis−1] = D(A)

K(A)

calculus of fractions

In this manuscript we wish to go directly from C(A) to the derived category D(A),
using the language of model categories. ✓

2. Model Categories

At this point we are ready to introduce the main notion of the manuscript, that
is the notion of a model category. Model categories where introduced in [Qui67]
and studied extensively in [Hov99]. However we take a slightly different and more
modern approach on the subject, based on the survey of Šťov́ıček [Šťo13, Section 4].

Definition 2.1. Let A be a category and f : X −→ Y , g : A −→ B be two morph-
isms in A. We write f □ g if for any commutative square

X A

Y B

a

b

f g∃h

there exists a lift h : Y −→ A, such that gh = b and hf = a. We say that f has
the left lifting property with respect to g and conversely, that g has the right
lifting property with respect to f .

Let S be a subset of Mor(A). We denote the following classes:

S□ = {g ∈ Mor(A) : f □ g, ∀f ∈ S} and □S = {f ∈ Mor(A) : f □ g, ∀g ∈ S}
It is straight forward to check that S□ is closed under (existing) pullbacks, while
□S is closed under (existing) pushouts.
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Definition 2.2. A pair of classes (L,R) of classes of morphisms in A is called a
weak factorisation system (WFS) if the following conditions hold.

(1) L andR are closed under retracts. That is, every time we have the following
commutative diagram

X A X

Y B Y

f g f

1X

1Y

and g is in L (or R) then f is also in L (or R).
(2) L□R, that is for every l ∈ L and every r ∈ R, l□ r.
(3) R◦L = Mor(A), that is, for every morphism f ∈ Mor(A), there exist l ∈ L

and r ∈ R, such that f = rl.

Remark 2.3. If the factorisation in the last axiom is functorial, in the sense that
there exist functors R,L : Mor(A) −→ Mor(A), such that f = R(f) ◦L(f), we say
we have a functorial weak factorisation system.

Definition 2.4. Let A be a category and cof, fib, weq be three subcategories
of Mor(A). We say that (cof, fib, weq) define a model structure on A if the
following hold.

(1) weq satisfies the 2-out-of-3 property, that is for each two morphism f, g
that the composition gf exists, if two of the morphisms are in weq, so is
the third one;

(2) weq is closed under retractions (thus contains all isomorphisms);
(3) (cof,fib∩weq) and (cof ∩weq,fib) are weak factorisation systems.

A model category is a category A with finite limits and colimits endowed with
a model structure (cof, fib, weq). The morphisms of cof are called cofibrations,
the morphisms in fib are called fibrations and the morphisms in weq are called
weak-equivalences.

Loosely speaking, one can consider the following motto: “every time that one
has a class of morphisms, that are not isomorphisms but one wishes they were,
there must be a model structure in the background with these morphisms as weak-
equivalences”. Moreover, for the experts, it might already be apparent that there
is a connection between model structures and cotorsion pairs, only by the axioms
of the definition.

Definition 2.5. Let A be a model category with initial object ∅ and terminal
object ∗.

(1) An object X ∈ A is called cofibrant if ∅ −→ X is a cofibration.
(2) An object X ∈ A is called fibrant if X −→ ∗ is a fibration.

Moreover, for each object X ∈ A there exist factorisations:

∅ X and X ∗

C(X) F(X)

a∈cof b∈fib∩weq ā∈cof ∩weq b∈fib

where C(X) is cofibrant and is called the cofibrant replacement of X and F(X)
is fibrant and called the fibrant replacement of X.
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Remark 2.6. In the case that (cof,fib∩weq) and (cof ∩weq,fib) are functorial
weak factorisation systems, then the cofibrant and fibrant replacements are func-
torial as well. That is, C(−) and F(−) are functors.

3. Homotopy Categories

Consider A to be a model category. The primary concepts of model categories
is to formally invert the weak-equivalences and pass to the localisation category
A[weq−1], where they are isomorphisms. As we explained in the first section, these
categories often are hard to control, however in the model category setup, one has
a nice description of them via the Fundamental Theorem of Model Categories of
Quillen. For what follows, we denote with Acf the full subcategory of A consisting
of cofibrant-fibrant objects.

Definition 3.1. Let A be a model category and X ∈ A.

(1) A cylinder object for X is an object X ′ ∈ A and a factorisation

X X
∐

X X

X ′

∇

a∈cof b∈weq

where ∇ is the co-diagonal map.
(2) A path object for X is an object X ′′ ∈ A and a factorisation

X X
∏

X X

X ′′

∆

s∈weq t∈fib

where ∆ is the diagonal map.

Definition 3.2. Let A be a model category and f, g : X −→ Y be two morphisms
in A.

(1) We say that f is left homotopic to g and we write f
l∼ g if there exists a

cylinder

X X
∐

X X

X ′ Y

i0

i1

a b

∃H

and a morphisms H : X ′ −→ Y such that Hai0 = f and Hai1 = g.

(2) We say that f is right homotopic to g and we write f
r∼ g if there exists

a path

Y Y
∏

Y Y

X Y ′

p0

p1

s t

∃H′

and a morphism H ′ : X −→ Y ′ such that p0tH
′ = f and p1tH

′ = g.
(3) We say that f is homotopic to g if it is both left and right homotopic.

We denote with ∼ the homotopy relation on A. One can straightforwardly
confirm that the homotopy relation is an equivalence relation on the Hom sets of
Acf . In particular, the left and right homotopy coincide in Acf and the homotopy
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relation is even compatible with the composition law of A. So we can form the cat-
egory Acf/ ∼ with the same object as Acf and Homs given by HomAcf/∼(X,Y ) =
HomAcf

(X,Y )/ ∼.

Theorem 3.3 (Fundamental Theorem of Model Categories). Let A be a model
category and Acf and Acf/ ∼ as above. The category Acf/ ∼ is equivalent to
the homotopy category Ho(A) = A[weq−1] and admits a canonical functor
Q : A −→ Acf/ ∼ that maps an object to its cofibrant-fibrant replacement and
satisfies the following universal property: for every functor F : A −→ D that maps
weak-equivalences to isomorphisms, there exists a functor F̄ : Acf/ ∼−→ D, such
that F = F̄Q. Diagrammatically, the following triangle commutes.

A Acf/ ∼

D

F

Q

F̄

4. Abelian Model Categories

The theory we developed in the previous sections can be applied to any cat-
egory. However, in the special case that A is an abelian (bicomplete) category, one
has a better description of the cofibrations and fibrations, in terms of kernels and
cokernels.

Definition 4.1. An abelian model category is a bicomplete1 abelian category
A endowed with a model structure, such that

(1) A morphism f is a cofibration if and only if, f is a monomorphism and
coker f is a cofibrant object.

(2) A morphism f is a fibration if and only if, f is an epimorphism and ker f
is a fibrant object.

The principal idea of Hovey in [Hov02] is that one can work with objects instead
of morphisms which are more controllable. We denote by

C = {X ∈ A : 0 −→ X ∈ cof}
F = {X ∈ A : X −→ 0 ∈ fib}
W = {X ∈ A : 0 −→ X ∈ weq}

the classes of cofibrant, fibrant and trivial objects, respectively. Recall the following
definition.

Definition 4.2. A pair (X,Y) in an abelian category A is called a cotorsion
pair if X = ⊥1Y and Y = X⊥1 . More concretely, if

• X ∈ X if and only if Ext1A(X,Y ) = 0, for all Y ∈Y and
• Y ∈Y if and only if Ext1A(X,Y ) = 0, for all X ∈ X.

The cotorsion pair is called complete if for every object A ∈ A, there exist short
exact sequences

0 −→ Y −→ X −→ A −→ 0 and 0 −→ A −→ Y −→ X −→ 0

with X ∈ X and Y ∈ Y. The first short exact sequence is called special X-pre-
cover, while the second one is called special Y-pre-envelope.

1A bicomplete abelian category admits all small limits and colimits
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Theorem 4.3 ( [Hov02] ). Consider an abelian model category A and the sub-
classes (C,W,F) defined as above. Then, (C,F∩W) and (C∩W,F) are complete
cotorsion pairs.

Sketch of the Proof. We give the sketch of the proof in steps for the pair (C,F∩W).
Step 1: Assume that C ∈ C and prove that Ext1A(C,K) = 0, for all K ∈ F∩W.

Indeed, let 0 −→ K
i−→ E −→ C −→ 0 be an extension of C by K. We claim that

it splits. Since C is cofibrant i : K −→ E is a cofibration and thus it has the left
lifting property with respect to trivial fibrations.

K K

E 0

i h

Therefore, it exists a lift h : E −→ K such that hi = 1K , which implies that indeed
the extension is trivial.
Step 2: Assume now that Ext1A(C,K) = 0 for all K ∈ F∩W and show that C ∈ C.

For this purpose consider the short exact sequence 0 −→ K −→ X
p−→ Y −→ 0,

with K ∈ F∩W and apply the functor HomA(C,−), for an arbitrary C ∈ A. This
yields an exact sequence

0 −→ HomA(C,K) −→ HomA(C,X)
p∗−→ HomA(C, Y ) −→ Ext1A(C,K) = 0

which implies that p∗ is an epimorphism. Thus, for every g : C −→ Y there is an
f : C −→ X such that p∗(f) = pf = g. In the language of model categories

0 X

C Y

p

g

f

the morphism 0 −→ C has the left lifting property with respect to the trivial
fibration p, hence it is a cofibration and by extension C is cofibrant.
Step 3: To show that every object X ∈ A admits a special pre-cover, consider
the morphism 0 −→ X, which by the factorisation axiom factors into a cofibration
followed by a trivial fibration, that is there exists the desired short exact sequence

0 −→ K −→ C −→ X −→ 0

with K ∈ F∩W and C ∈ C. The remaining assertions are left as an exercise for
the reader. ■

Definition 4.4. A subcategory B of A is called thick, if it is closed under direct
summands and satisfies the 2-out-of-3 property, that is for each short exact sequence
0 −→ A −→ B −→ C −→ 0 in A with two entries in B, the third one is also in B.

It is straightforward to prove that the class of trivial objects W is a thick sub-
category of the abelian model category A.

Theorem 4.5 ( [Hov02] ). Let (C,F∩W) and (C∩W,F) be complete cotorsion
pairs in A and W is thick. Then, (C,W,F) is an (abelian) Hovey triple on A,
that is, A is an abelian model category with C,F and W as cofibrant, fibrant and
trivial objects, respectively.
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Idea of the Proof. The proof of this Theorem is extensive and takes up a whole
section in [Hov02]. We prove only the factorisation axiom in which it is apparent
that the completeness of the cotorsion pairs is necessary and we note that the
thickness of W is mandatory in order to prove the 2-out-of-3 property of weq.

We prove that every f ∈ Mor(A) factors as f = qj = pi, where j ∈ cof, i ∈
fib, q ∈ fib∩weq and p ∈ weq∩ cof. In particular we only prove that f factors as
f = qj. To do so, we consider the following cases.
Monomorphism: Consider that f is a monomorphism with C = coker f . By the
completeness of the cotorsion pair (C,F∩W) there is an object QC ∈ W and an
epimorphism QC −→ C with trivial fibrant kernel K ∈ F∩W, that is, we have a
short exact sequence 0 −→ K −→ QC −→ C −→ 0. So, we end up with a diagram

0

K K

A B′ QC

0 A B C 0

0

f

h

g

q

g′

j

⌜

that “begs to become” a pullback diagram. So f = qj, where q is a trivial fibration
since h is a trivial fibration and j is a cofibration since it’s a monomorphism with
cofibrant cokernel QC.
Epimorphism: Follows by the dual arguments.

Now assume that f is an arbitrary morphism. Then we can re-write it as

A A⊕B B

C ′ C

i1 f+1B

j′j

q′′

q′

First we factor the epimorphism f+1B as f+1B = q′j′ and then the monomorphism
j′i1 as j′i1 = q′′j. It follows that f = qj, where q = q′q′′. ■

We conclude that the abelian model structures on an abelian category A are in
one-to-one correspondence with complete cotorsion pairs (C,F∩W) and (C∩W,F)
withW thick inA. In the case of abelian model categories, the associated homotopy
category, behaves nicely.

Theorem 4.6 ( [Gil16] ). Let A be a bicomplete abelian category and (C,W,F) a
Hovey triple on A. The following hold.

(1) The full subcategory Acf = C∩F is a Frobenius exact category, with the
inherent exact structure from A;

(2) The class of projective/injective objects on Acf is the core ω = C∩W∩F;
(3) The inclusion Acf −→ A induces an equivalence of categories

Acf

C∩W∩F
∼−→ Ho(A) = A[weq−1].

In particular, Ho(A) is triangulated.
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Sketch of the Proof. The full proof can be found in [Gil16] and in greater generality
in [Gil11]. We provide the main idea.

Notice that since Acf is closed under extensions, it inherits an exact structure
from A. In particular this exact structure is Frobenius. Assume the short exact
sequence 0 −→ X −→ Y −→ Z −→ 0 in Acf . If either of X or Z is in ω, the
short exact sequence splits. Thus, every object in ω is projective and injective
with respect to the exact structure. Assume now that I ∈ Acf is injective with
respect to the exact structure on Acf . By the completeness of the cotorsion pair
C,F∩W), there exists a (split) short exact sequence 0 −→ I −→ W −→ C −→ 0,
with W ∈ W∩F and C ∈ C. Since the model structure is hereditary, one has that
C ∈ C∩F and moreover W ∈ ω. So, I ∈ ω as ω is closed under direct summands
and the sequence above splits. Furthermore, replacing I with an arbitraryX ∈ Acf ,
the same argument yields that Acf has enough injectives. Dually one can prove
the same for the projectives. The third assertion of the Theorem follows by the
Fundamental Theorem of Model Categories 3.3. Finally, Ho(A) is triangulated by
Happel’s Theorem (c.f. [Hap88]). ■

5. Examples

We conclude our manuscript with a familiar example, decorated in the framework
of model categories.

Example 5.1. Let R be an associative unital ring and A = C(R) the category of
complexes of R-modules. There are two model structures on A.
Injective model structure: In the injective model structure one has the classes
C = A, W = Ac(A) of acyclic complexes of R-modules and F = DG-Inj(A) of
semi-injective complexes, as the classes of cofibrant, trivial and fibrant objects,
respectively. Recall that a complex I ∈ C(R) is called homotopically injective
if it’s terms are injective R-modules and for every acyclic complex N ∈ C(R),
HomK(R)(N, I) = 0. The cotorsion pairs in our case are

(C,F∩W) = (A, Inj(A)) and (C∩W,F) = (Ac(A),DG-Inj(A))

It is routine to check that they are complete and that Ac(A) is thick in A. Thus by
Theorem 4.5 we have an abelian model structure on A, whose weak-equivalences
are the quasi-isomorphisms. The associated homotopy category is

Ho(A) = C(R)[qis−1] ∼= D(R)

the derived category of the ring R (as expected by Krause’s recollement situation
in [Kra10]).
Projective model structure: Dually one can define the projective model structure
on A = C(R) by taking C = DG-Prj(A), W = Ac(A) and F = A. This model
structure has the same weak-equivalences as the injective model structure and by
extension the same homotopy category, that is, the derived category D(R). ✓
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